Effects of vertex truncation of polyhedral nanostructures on localized surface plasmon resonance.
نویسندگان
چکیده
Polyhedral nanostructures are widely used to enable localized surface plasmon resonance (LSPR). In practice, vertices of such structures are almost always truncated due to limitations of nanofabrication processes. This paper studies the effects of vertex truncation of polyhedral nanostructures on the characteristics of LSPR sensing. The optical properties and sensing performance of triangular nanoplates with truncated vertices are investigated using electrodynamics analysis and verified by experiment. The experimental results correlated with simulation analysis demonstrate that the fabricated triangular nanoplate array has a truncation ratio, defined as the length of truncation along an edge of the triangle over the edge length, of approximately 12.8%. This significantly influences optical properties of the nanostructures, resulting in poorer sensing performance. These insights can be used to guide the design and fabrication of nanostructures for high performance LSPR sensors.
منابع مشابه
Hydrogen sensing by localized surface plasmon resonance in colloidal solutions of Au-WO3-Pd
Nowadays, hydrogen has attracted significant attention as a next generation clean energy source. Hydrogen is highly flammable, so detection of hydrogen gas is required. Gold nanoparticle based localized surface plasmon resonance (LSPR) is an advanced and powerful sensing technique, which is well known for its high sensitivity to surrounding refractive index change in the local environment. We p...
متن کاملTunable Plasmonic Nanoparticles Based on Prolate Spheroids
Metallic nanoparticles can exhibit very large optical extinction in the visible spectrum due to localized surface plasmon resonance. Spherical plasmonic nanoparticles have been the subject of numerous studies in recent years due to the fact that the scattering response of spheres can be analytically evaluated using Mie theory. However a major disadvantage of metallic spherical nanoparticles is ...
متن کاملA numerical investigation of the effect of vertex geometry on localized surface plasmon resonance of nanostructures.
Advances in nanofabrication and nano-scale measurement methods now allow for fabrication of highly detailed nanometer-scale topographic features. As geometric features greatly impact the formation of an electromagnetic field in response to incident light, this in turn calls for the study of the effects of new features of nanostructures on their performance in applications such as localized surf...
متن کاملCalculation of the Induced Charge Distribution on the Surface of a Metallic Nanoparticle Due to an Oscillating Dipole Using Discrete Dipole Approximation method
In this paper, the interaction between an oscillating dipole moment and a Silver nanoparticle has been studied. Our calculations are based on Mie scattering theory and discrete dipole approximation(DDA) method.At first, the resonance frequency due to excitingthe localized surface plasmons has been obtained using Mie scattering theory and then by exciting a dipole moment in theclose proximity of...
متن کاملAntibody Conjugated Gold Nanoparticles for Detection of Small Amounts of Antigen Based on Surface Plasmon Resonance (SPR) Spectra
In this paper, a fast and sensitive localized surface plasmon resonance (LSPR) based biosensor was developed and the optimization of gold – antibody conjugates through investigation of different parameters were performed. Gold nanoparticles (AuNPs) with a size of ~20 nm were synthesized via chemical reduction of HAuCl4 with trisodium citrate as reducing and stabilizing agent. The impacts of pH ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 17 17 شماره
صفحات -
تاریخ انتشار 2009